Multigrid defect correction and fourth-order compact scheme for Poisson’s equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extrapolation Cascadic Multigrid Method Combined with a Fourth-Order Compact Scheme for 3D Poisson Equation

In this paper, we develop a new extrapolation cascadic multigrid (ECMG) method to solve the 3D Poisson equation using the compact finite difference (FD) method. First, a 19-point fourth-order compact difference scheme with unequal meshsizes in different coordinate directions is employed to discretize the 3D Poisson equation on rectangular domains. By combining the Richardson extrapolation and t...

متن کامل

A Combined Fourth-order Compact Scheme with an Accelerated Multigrid Method for the Energy Equation in Spherical Polar Coordinates

A higher-order compact scheme is combined with an accelerated multigrid method to solve the energy equation in a spherical polar coordinate system. The steady forced convective heat transfer from a sphere which is under the influence of an external magnetic field is simulated. The convection terms in the energy equation are handled in a comprehensive way avoiding complications in the calculatio...

متن کامل

A fourth-order compact difference scheme on face centered cubic grids with multigrid method for solving 2D convection diffusion equation

We present a fourth-order compact finite difference scheme on the face centered cubic (FCC) grids for the numerical solution of the two-dimensional convection diffusion equation. The seven-point formula is defined on a regular hexagon, where the strategy of directional derivative is employed to make the derivation procedure straightforward, efficient, and concise. A corresponding multigrid meth...

متن کامل

A Compact Fourth Order Scheme for the Helmholtz Equation in Polar Coordinates

In many problems, one wishes to solve the Helmholtz equation in cylindrical or spherical coordinates which introduces variable coefficients within the differentiated terms. Fourth order accurate methods are desirable to reduce pollution and dispersion errors and so alleviate the points-per-wavelength constraint. However, the variable coefficients renders existing fourth order finite difference ...

متن کامل

A general meshsize fourth-order compact difference discretization scheme for 3D Poisson equation

A fourth-order compact difference scheme with unrestricted general meshsizes in different coordinate directions is derived to discretize three-dimensional Poisson equation on a regular cubic domain. The difference scheme derivation procedure makes use of the symbolic representation of the finite difference schemes and is easier to understand in such complex three-dimensional manipulations. We u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2017

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2017.01.016